
The "Third Way" of Change Notification: the
ValueChangedEventManager and How to Clean Up its
Memory Leaks

by R. Stacy Smyth

When change notification is required by a binding but not implemented by the
developer, sometimes the framework steps in and implements it automatically, via the
ValueChangedEventManager. In terms of supplying the required functionality, this is
great. For memory management, it's a disaster. This article explains how it works, and
what to do about it.

We all know how change notification is supposed to be implemented:

• Create a dependency object and implement the properties that need change
notification as custom dependency properties, or

• Implement INotifyPropertyChanged on a POCO ("plain old CLR object") and raise
OnPropertyChanged in the setter of each property requiring change notification.

If you bind to a source property that doesn't use either of these two approaches, you
probably won't be surprised to find that change notification isn't working: you change
the source property, and the target property stays the same. Specifically, this is what
happens if the source object of the binding is a dependency object but the source
property is a regular CLR property (not a dependency property) — change notification
simply doesn't work.

Surprisingly, though, if the source object of the binding is a POCO instead of a
dependency object, and the source property is a plain old CLR property (not a
dependency property), change notification does work, even when
INotifyPropertyChanged isn't implemented — if you change the value of the property,
the binding target is updated, just as it should be.

The obvious questions is, “How?” (Which I'll answer shortly.) The not‐at‐all‐obvious
question is, “What do we do about it?” Because this kind of change notification causes
big problems for memory management.

The "how" is a barely documented change notification mechanism that exists in internal
Microsoft code, in addition to the documented mechanisms of dependency properties
and INotifyPropertyChanged.

First I'll describe how this barely‐mentioned change notification system works, then I'll
describe the consequences for memory management. (The "barely mentioned" part is
Microsoft Knowledge Base Article 938416, "A memory leak may occur when you use

The ValueChangedEventManager
©2011 R. Stacy Smyth Page 2

data binding in Windows Presentation Foundation".)

How ValueChanged Notification Works

When WPF detects that you are setting up a binding that should have change
notification from the source (i.e. not a one time‐binding or one‐way‐to‐source) but
doesn't have change notification implemented, it adds change handling automatically
for you.

This is done by adding a change handler to the PropertyDescriptor for the property that
needs to generate the change notifications. (The PropertyDescriptor is available
through the type object describing the object on which the property resides.)
Specifically, the change handler is added via PropertyDescriptor.AddChangeHandler,
which takes as its parameters the object on which the property resides and the handler
that should be invoked when a change occurs.

However, the intent of this change handler is not merely to provide change notification
to this one particular listener (the binding, or rather a PropertyPathWorker within it),
but rather to enable change notification in general for this property. As such, the change
handler it adds to the PropertyDescriptor is not the ultimate change handler associated
with the binding, but rather is an instance of
MS.Internal.Data.ValueChangedEventManager.ValueChangedRecord — which in turn
can store a whole list of listeners that should be notified whenever the property
changes. Not surprisingly, the ultimate change handler associated with the binding is
added to this list.

So far, this system seems like a sensible way to do things. That’s only because we
haven’t talked about memory leaks yet.

How ValueChanged Notification Creates Memory Leaks

The irony of what comes next is that it involves the "weak event pattern", which was
created specifically to avoid the memory leaks that are commonly associated with event
handling.

With typical event handling, handlers are added something like this:

someSource.someEvent += someListener.someHandler;

This sort of event handling creates a hard reference from the invocation list of
someEvent to someListener, with the result that if you never unwire the handler (with
‐=), someListener is forced to stay in memory as long as someSource has not been
garbage collected. It's probably the most common source of memory leaks in WPF.

The weak event pattern was designed to avoid these leaks by creating a way of wiring

The ValueChangedEventManager
©2011 R. Stacy Smyth Page 3

up events so that event listeners would only be referenced through weak references,
thereby allowing them to have life spans that are unaffected by the sources of the
events they are listening to.

If we wanted to use the weak event pattern for a particular event ourselves (the
"whatever" event, for example), we would:

1. Derive a new class from WeakEventManager, called WhateverEventManager.

2. Implement IWeakEventListener on the class we want to have listen for this
event.

3. Override AddListener and RemoveListener in our new manager class.

When we call AddListener to associate a listener with a source, the manager stores the
reference to the listener as a weak reference, so that even if our event source is never
garbage collected, the listener can be garbage collected if it is otherwise eligible.

Microsoft has already done this with the ValueChangedEventManager class; they just
haven't released any documentation on how it works. But if you dig into it with
reflection or a memory profiler, you find out that:

• The ValueChangedEventManager is used to give property descriptors, which
usually use AddValueChanged and RemoveValueChanged to manage change
notification in a very standard, hard‐reference‐based way, access to the weak
event pattern.

• Internally, all of the weak event managers are using the same big static hash
table (the WeakEventTable) to keep track of what listeners are listening to what
sources. The type of the weak event manager associated with a particular key‐
value pair is part of the key for this table.

• The other part of the key for the WeakEventTable is the event source. The event
source is stored via a weak reference, so entries in the WeakEventTable won't
keep sources from being garbage collected.

• The type of value stored in the WeakEventTable by a particular manager is
dependent on the type of event that the manager manages. The
ValueChangedEventManager class uses
ValueChangedEventManager.ValueChangedRecord.

• All of the values in the weak event table store lists of listeners, referenced
through weak references. Things are a little more complicated in the case of
managers where source objects can have multiple properties producing change
notifications (i.e., the PropertyChangedEventManager and the
ValueChangedEventManager), but the complexity doesn't matter for this
discussion.

The ValueChangedEventManager
©2011 R. Stacy Smyth Page 4

So far, all of this sounds quite good: property descriptors usually use a hard‐reference‐
based change notification system via AddValueChanged and RemoveValueChanged, but
that system can produce memory leaks where the source keeps the listener in memory.
In the case of automatically implemented change notification (the kind where the
system adds it for us), the system shouldn't be making assumptions about the lifetimes
of the sources and the listeners, so instead of using the hard‐reference‐based system,
the system uses the ValueChangedEventManager to give property descriptors access to
the weak event pattern to avoid the possibility of leaks. The WeakEventTable uses weak
references inside the key values referencing the sources, and also uses weak references
to store the lists of references, so everything ought to be fine.

All well and good, except that each value that the ValueChangedEventManager stores in
the WeakEventTable — of type ValueChangedEventManager.ValueChangedRecord —
stores a hard reference to its source object.

As nearly as I can tell, the way the WeakEventTable is intended to work is analogous to
garbage collection — periodically, it scans itself and finds things to get rid of. If an entry
is keyed (via a weak reference) to a source object that has been garbage collected, the
entry is deleted, as that source can no longer generate events. If a listener has been
garbage collected, it is removed from the listener lists, with the possible consequence of
removing entire WeakEventTable entries if particular sources no longer have any
listeners. The fact that reflection reveals methods named "Cleanup", "Purge", and
"ScheduleCleanup" gives credence to this interpretation.

The problem is that since the WeakEventTable values for the
ValueChangedEventManager contain a hard reference to the source objects, the source
objects are never garbage collected, and that means that the periodic scans conducted
by the WeakEventTable never show that these entires should be removed — with the
result that the hard references, and therefore the source objects, remain in memory
indefinitely. In other words, a memory leak.

In a strange inversion of the usual memory leaks associated with event handling, this
means that it is the source objects, not the listeners, that are trapped indefinitely in
memory.

Solution

Based on the architecture described above, here is the code that unhooks a source from
the entire ValueChangedWeakEventManager system, so that the source can be garbage
collected. It removes the source first from the WeakEventTable, then from the lists of
ValueChanged handlers on the property descriptors of the type to which the source
belongs.

public static void RemoveSourceFromValueChangedEventManager(object source)
{
 // Remove the source from the ValueChangedEventManager.
 Assembly assembly = Assembly.GetAssembly(typeof(FrameworkElement));

The ValueChangedEventManager
©2011 R. Stacy Smyth Page 5

 Type type = assembly.GetType("MS.Internal.Data.ValueChangedEventManager");
 PropertyInfo propertyInfo = type.GetProperty("CurrentManager",
 BindingFlags.NonPublic | BindingFlags.Static);
 MethodInfo currentManagerGetter = propertyInfo.GetGetMethod(true);
 object manager = currentManagerGetter.Invoke(null, null);

 MethodInfo remove = type.GetMethod("Remove", BindingFlags.NonPublic |
 BindingFlags.Instance);

 remove.Invoke(manager, new object[] { source });

 // The code above removes the instances of ValueChangedRecord from the
 // WeakEventTable, but they are still rooted by the property descriptors of
 // the source object. We need to clean them out of the property descriptors
 // as well, to allow them to be garbage collected. (Which is necessary
 // because they contain a hard reference to the source, which is what we
 // really want garbage collected.)

 FieldInfo valueChangedHandlersInfo = typeof(PropertyDescriptor).GetField
 ("valueChangedHandlers", BindingFlags.Instance | BindingFlags.NonPublic);

 PropertyDescriptorCollection pdc = TypeDescriptor.GetProperties(source);
 foreach (PropertyDescriptor pd in pdc)
 {
 Hashtable changeHandlers =
(Hashtable)valueChangedHandlersInfo.GetValue(pd);
 if (changeHandlers != null)
 {
 changeHandlers.Remove(source);
 }
 }
}

