
Delaying Element Initialization for Collapsed Controls 
by R. Stacy Smyth 

The Problem 
Many of the time delays associated with getting a control from XAML to the screen are 
automatically eliminated for collapsed controls: most of the bindings are never 
evaluated, the measure and arrange passes never occur, and of course rendering does 
not occur. 

The delays that remain for collapsed controls are the delays associated with 
initialization: InitializeComponent() is called at the top of each control constructor, and 
this results in the XAML for that control being loaded, parsed, and used to construct the 
visual tree of the control, whether that control will ever be displayed or not. What can 
be even more costly is that InitializeComponent() connects the event handlers specified 
in the XAML for the control to the appropriate events, and this results in the event 
handlers for the Initialized and Loaded events being called as well — once again, before 
it has ever been determined if the control will ever be made visible. 

The objective of this paper, and the accompanying project which implements a solution, 
is to find a way to eliminate these time delays in the case of collapsed controls. 

There are two parts to the problem: 

1. Specifying delayed initialization: using XAML to indicate which specific controls 
should have their initialization delayed. 

2. Implementing delayed initialization: giving control classes the ability to delay the 
initialization of the controls in those classes. 

(This ordering may seem unusual. When adding a new capability, we're usually 
concerned first about how to make it work at all, then interested in how to turn it on 
and off as almost an afterthought with several standard solutions. But this problem has 
some unique difficulties. You'll see why below.) 

Specifying Delayed Initialization 
We don't want our solution to cause sweeping changes all over the program by causing 
delayed initialization everywhere. Changing how and when control initialization is 
performed is fairly deep stuff, and we need to be able to turn on this ability on in one 
place at a time so that we can evaluate the results. This means that each class needs to 
default to performing as it always has — by calling InitializeComponent immediately — 
but we need some sort of property or setting to tell the some of the controls to wait 
until visibility has been evaluated. 

Furthermore, we need to add this ability to lots of different control classes, and we 



Avoiding Element Initialization for Collapsed Controls 
© 2011 R. Stacy Smyth  Page 2 

don't want to add code to all of those different classes unless we absolutely have to. 

This combination of requirements makes attached behaviors sound like the perfect 
solution — an attached behavior would both add the property for saying we want to 
delay initialization, and change the behavior of the controls without directly adding code 
to the control classes. 

Unfortunately, the attached behavior solution — at least in its purest form — 
immediately hits a couple of insurmountable obstacles: 

1. The call to InitializeComponent() is hard‐coded at the beginning of each 
constructor, before any events associated with the object are raised, so there is 
categorically nothing that we can do with clever event handling (the heart of 
attached behaviors) that can keep InitializeComponent() from being called. 

2. Inside InitializeComponent() a field named _contentLoaded determines whether 
the method body is actually executed. This is a private bool, so once again there 
is nothing we can do from an attached behavior to hijack this field so as to 
prevent InitializeComponent() from executing. 

As such, we already know that the solution is going to require at least minimal coding 
changes to the classes for which we would like to enable delayed initialization — we just 
can't do it all from attached behaviors, which rely on event handling. 

All right then, if we're going to make this feature functional by actually adding code to 
each enabled class (we'll come back to that later — it'll turn out to be a single line of 
code), the question then becomes what mechanism we should use to specify which 
specific control instances we want to have delay their initialization. 

We definitely want to be able to use XAML to indicate which controls to delay 
initialization for, so that leaves us with either adding a dependency property to each 
class, or using an attached property. 

At this point we hit another, quite major snag: we cannot evaluate an attached property 
at the top of the control constructor to decide whether to do immediate or delayed 
initialization, because at the time the constructor is executed, these properties haven't 
been evaluated and assigned yet! The same goes for regular dependency properties that 
are part of the class definition of the control — their values aren't assigned to the 
control until after the constructor has finished executing. Which seems to leave us 
completely stuck. 

My solution to this part of the problem works, but I won't claim it's pretty, and I 
welcome suggestions to improve it. Namely, we don't attach the property indicating 
delayed initialization to the control we are interested in, but rather to the control's 
parent (or other ancestor) — because the parent's properties will already have been 
evaluated and assigned by the time the child controls that we're interested in have their 
constructors called. 



Avoiding Element Initialization for Collapsed Controls 
© 2011 R. Stacy Smyth  Page 3 

To specify which child control(s) we would like to have delayed initialization for, the 
obvious thing to do is to set the value of the attached property to the name (or names) 
of the control(s) we would like to affect. But this, too, has a problem: it's useless to set 
the name of the control we want to affect as the value of the attached property, 
because — you guessed it — the "name" property of the child control hasn't been 
assigned yet at the time the constructor is executed. So the control we would like to 
affect doesn't know its own name by the time we would like to use its name to make 
the decision of whether we will delay initialization. 

And it gets worse: The visual tree for the child control hasn't been constructed yet 
(avoiding doing this is one of our big objectives), much less connected to the overall 
logical tree, so the "Parent" property is not yet available. We can't check the parent to 
see if it has an attached property set, because there is no way to find out who our 
intended parent is. 

So what good does it do to set an attached property on the parent of the control if we 
can't find the parent to check the property? Well, there is a way. 

Specifically, we create an OnChanged handler for the attached property on the parent 
and use it to set a static field indicating that delayed initialization is desired for whatever 
is being constructed. 

Wait, though: that sounds like a total failure. We've just permanently turned on delayed 
initialization for whatever is constructed after the element with the attached property, 
right? And that's not what we wanted at all. 

We correct this by turning our attached property into an attached behavior: we have 
our OnChanged handler for the attached property add an event handler for the 
"Initialized" event of the element to which the property is attached. This handler resets 
the static field to indicate we no longer want delayed initialization. This has the effect of 
turning on the static "do delayed initialization if possible" flag while the descendants of 
the propertied element are being constructed, and turning it back off afterwards. That 
way, the descendants of the ancestor element are the only controls affected. 

Affecting all of the delay‐capable descendants of the propertied element is better than 
nothing, but it still seems a bit scattershot — there may be child controls for which we 
want delayed initialization and child controls for which we don't. There's one more thing 
we can easily do to tighten our focus: the child controls being constructed don't have 
names yet, but they do already have types. Instead of just setting the property (I'll call it 
“SkipType”) to "True", indicating a desire for delayed initialization on all descendants, 
we set SkipType to the Type of the control we want to affect — or to System.Object if 
we want to affect every descendant that is capable of delayed initialization. If we grant 
that the number of delayable control classes within a parent element is going to be 
small, this gives us the level of control necessary to turn this feature on and off with 
adequate precision. 



Avoiding Element Initialization for Collapsed Controls 
© 2011 R. Stacy Smyth  Page 4 

If we ever run into a situation where we want to turn on delayed initialization for one 
control but off for a direct sibling that is of the same class (unlikely), we could always 
wrap the control that we want to delay in a 0‐thickness Border and set the attached 
property on that. 

So now, at last, we have a way of indicating to a control whether we want it to delay 
initialization until after it has determined whether it is visible. 

Implementing Delayed Initialization 
Making this feature work is actually simpler than specifying which controls we want to 
have it apply to. In one way or another, we want the following logic to be performed at 
the top of our control constructors: 

If the control isn't of the type that we want to delay initialization for, we simply call 
InitializeComponent() on the control. If the control is of the desired class, though, we set 
an event handler for IsVisibleChanged, and call InitializeComponent() from there. 
InitializeComponent(), in turn, parses the XAML, builds the visual tree for the control, 
and wires up the control's event handlers. The IsVisibleChanged handler won't be called 
until the visibility of the control is changed, and for collapsed controls that's going to be 
never. Which is the whole point. 

There's one more thing that IsVisibleChanged needs to do: in between when the control 
is constructed and when IsVisibleChanged is called, the framework goes ahead and 
raises the Initialized and Loaded events for the control, even though the control has no 
visual tree and certainly is neither initialized nor loaded. Fortunately for us, this does not 
result in the handlers for these events being prematurely called: the usual place for 
these handlers to be specified is in the XAML for the control, and of course this XAML 
won't have been parsed before our IsVisibleChanged is called! 

So we've dodged having these handlers be incorrectly and prematurely called by the 
framework. But we still need to call them from IsVisibleChanged, now that the control 
has actually been initialized and loaded. 

Unfortunately, there is no way to raise these events from within the IsVisibleChanged 
handler — they can only be raised from within the control class, and we'd really like for 
all of this code we've been talking about to not be copied into each class that requires 
delayed initialization. 

We solve the "where do we put the code" problem by moving all of this additional code 
into a static class called InitializationOptions — that's where we put the static field we 
mentioned earlier,too — and we do both the wiring up of IsVisibleChanged and the 
decision‐making about delayed initialization though a call to 
InitializationOptions.Initialize(), which we call from the constructor of our control class 
instead of calling InitializeComponent. 



Avoiding Element Initialization for Collapsed Controls 
© 2011 R. Stacy Smyth  Page 5 

We solve the "how do we raise Loaded and Initialized" problem by overloading 
InitializationOptions.Initialize() so that it can accept two additional parameters if desired 
— the handlers for the Initialized and Loaded events on the control. We can't raise the 
events these handlers are associated with, but there's nothing to keep 
InitializationOptions.IsVisibleChanged from calling the handlers directly, right after 
calling InitializeComponent(). 

The only additional wrinkle is that the InitializationOptions class needs some way to 
keep track of these handlers in between the call to Initialize() and the call to 
IsVisibleChanged(). We do this by having Initialize() set a pair of attached properties on 
the control itself. 

And that wraps up how to defer initialization until a control is actually displayed, or is at 
least changed to something other than collapsed — we need to call 
InitializeComponent() for Hidden controls too, since we need sizing information from 
them. 

Effectiveness 
The sample program that accompanies this document has two modes, selectable by 
changing which visual tree is commented in/out in MainWindow.xaml. 

In "Functionality Test Mode", the app uses delayed initialization for a single custom 
control. This is useful for stepping through the code in the debugger and understanding 
what's going on. 

In "Speed Test" mode, the app uses delayed initialization to create a substantial block of 
Collapsed, non‐trivial custom controls. 

Both modes display a dialog showing how many milliseconds were spent during loading, 
and in both modes it is possible to comment out the attached property specifying 
delayed initialization, thereby allowing a comparison of load times. 

The result of multiple timing runs on my particular system was that creating the window 
with no children in the StackPanel took 46 ms; creating the block of collapsed controls 
using standard initalization took 187 ms; and creating the block of collapsed controls 
using delayed initialization took 62 ms. If you subtract out the time to create an empty 
window (46 ms), that leaves 141 ms dedicated to creating the controls the normal way, 
and 16 ms dedicated to creating the controls using deferred initialization. 

In other words, creating this block of collapsed controls using delayed initialization was 
approximately Nine Times as Fast as conventional initialization. 

This example does not have any code in the handlers for the Initialized and Loaded 
events of the sample control class. If the control did any work in the handlers for 
Initialized or Loaded, all of that work would be done using standard initialization, and 
none of it would be done using delayed initalization. In other words, the difference in 



Avoiding Element Initialization for Collapsed Controls 
© 2011 R. Stacy Smyth  Page 6 

speed would expand from 9‐to‐1 to being arbitrarily large, depending on the work done 
in the two event handlers. 

Limitations 
As cool as this system is, there are several situations it can't handle: 

1. Binding Visibility with a relative source. RelativeSource requires a logical tree to 
be relative to — and a control using delayed initalization doesn't get plugged 
into the logical tree until after visibility is evaluated. So this isn't going to work. 

2. "OnChanged" handlers for properties that are set from XAML outside of the 
control, before the control is made visible. Setting the properties is fine, but until 
the control is shown, it doesn't parse its XAML, and it doesn't wire up its event 
handlers. If you need this functionality, set up the event handlers in the 
constructor for the control — that way they won't be dependent on when the 
XAML for the control gets loaded. 

3. Doing stuff in the constructor that relies on the visual tree that we're not 
building because we're not calling InitializeComponent. Any such code needs to 
get moved to a handler for Initialized or Loaded. 

4. Non‐custom controls. Since you need to add code (one line) to the affected 
control classes, this technique is only for custom control classes, not the pre‐
defined, framework‐provided classes. 

The Sample Program 
• Nearly all of the meat of how delayed initialization works is in 

InitializationOptions.cs. 

• The code for the sample control that uses delayed initialization is in 
SimpleControl.xaml and SimpleControl.cs. 

• To change the mode in which the sample program operates, read the comments 
in MainWindow.xaml and follow the instructions. You can run the program with 
or without delayed initialization, and with or without enough delayed‐
initialization controls to make a perceptible difference in speed. 

How to Use Delayed Initialization in Your Own Code 
If you want to modify a class so that it can use delayed initialization, do the following: 

1. Add the InitializationOptions.cs file from my sample project to your project. 

2. Replace the line in the constructor that reads 

InitializeComponent(); 



Avoiding Element Initialization for Collapsed Controls 
© 2011 R. Stacy Smyth  Page 7 

with the line 

InitializationOptions.Initialize(this 
[,MyControl_Initialized][,MyControl_Loaded]); 

where MyControl_Initialized and MyControl_Loaded are optional parameters specifying 
the control's handlers for the Initialized and Loaded events, respectively. 

3. In the XAML that creates the control, on an ancestor of the control — not on the 
control itself — set the following property: 

initopt:InitializationOptions.SkipType="{x:Type sys:Object}" 

By default, this will turn on delayed initialization for all delayed‐initialization‐capable 
descendants of the control with this property. If you want to turn on delayed 
initialization for only the control of one class, specify that class instead of sys:Object. 


